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Abstract

The geometrically non-linear scale dependent response of polycrystal FCC metals is modelled by an enhanced crystal

plasticity framework based on the evolution of several dislocation density types and their distinct physical influence on

the mechanical behaviour. The isotropic hardening contribution follows from the evolution of statistically stored

dislocation (SSD) densities during plastic deformation, where the determination of the slip resistance is based on the

mutual short range interactions between all dislocation types, i.e. including the geometrically necessary dislocation

(GND) densities. Moreover, the GND’s introduce long range interactions by means of a back-stress measure, opposite

to the slip system resolved shear stress.

The grain size dependent mechanical behaviour of a limited collection of grains under plane stress loading conditions

is determined using the finite element method. Each grain is subdivided into finite elements and an additional

expression, coupling the GND densities to spatial crystallographic slip gradients, renders the GND densities to be taken

as supplemental nodal degrees of freedom. Consequently, these densities can be uncoupled at the grain boundary nodes,

allowing for the introduction of grain boundary dislocations (GBD’s) based on the lattice mismatch between neigh-

bouring grains and enabling the obstruction of crystallographic slip perpendicular to the grain boundary.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The grain size dependent mechanical behaviour of a polycrystal FCC metal has been modelled physically

using a crystal plasticity approach for finite deformations. In most conventional single and polycrystal

plasticity models, e.g. as published by Bronkhorst et al. (1992) and Kalidindi et al. (1992), the influence of
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inter- and intragranular inhomogeneities is not explicitly incorporated in the constitutive description,

whereas it is the basic origin of scale dependent behaviour and the resulting size effects. In general, such

inhomogeneities at the microscale can be caused by externally applied macroscopic gradients of plastic

deformation, by the presence of grain boundaries locally obstructing the plastic deformation (Becker and
Panchanadeeswaran, 1995), or by a combination of both. The best-known macroscopic experimental

consequence of these effects is the increased flow stress on decreasing average grain size, which is expressed

by the so-called ‘‘Hall–Petch relation’’ (Hall, 1951; Petch, 1953; Armstrong et al., 1962). In particular, the

flow stress is nearly proportional to the inverse square root of the average grain diameter (see also Hansen,

1982; Narutani and Takamura, 1991; Evers et al., in press).

Several suggestions have been proposed to explain this strengthening effect (Gavriljuk et al., 1999). The

‘‘dislocation pile-up models’’ are based on the perception that dislocations pile-up against grain boundaries

and therefore obstruct the crystallographic slip through stress concentrations. On the other hand, ‘‘work
hardening models’’ state that the overall concentration of dislocations in a grain increases once the volume

in which they reside ––which is connected to the grain size–– decreases, corresponding to an increased

inhomogeneity and a decreased mean free path within the grains. The presented model actually

includes both effects, because dislocations concentrate at the grain boundaries and inflict a back-stress to

the motion of dislocations carrying the plastic deformation, while at the same time, the strength of those

dislocation concentrations depends on the heterogeneity within the grain, which increases with decreasing

grain size.

Next to the so-called ‘‘geometrically necessary dislocations’’ (GND’s), which are directly related to local
non-uniform plastic deformations and which are required to preserve the compatibility of the crystallo-

graphic lattice in cases of unevenly distributed plastic slip, the second type of dislocations to be distin-

guished are ‘‘statistically stored dislocations’’ (SSD’s), a distinction first identified by Ashby (1970). The

latter dislocation density accumulates during (uniform as well as non-uniform) plastic deformation as a

result of interactions between dislocations mutually, and the motion of SSD’s is actually the mechanism

behind crystallographic (plastic) slip on the distinct slip planes of the material. It can be expected that the

GND’s are concentrated near the grain boundary regions (Kocks, 1970; Thompson et al., 1973), due to

the lattice mismatch with neighbouring grains, whereas the SSD densities mostly evolve in the grain
interiors, as a result of the more intensive and less obstructed plastic flow in that region. An investigation of

the interaction between dislocation densities and grain boundaries can be found in Ashmawi and Zikry

(2003).

The actual difference between SSD’s and GND’s resides in their role only, i.e. in the fact that the latter

do not directly participate in the local crystallographic slip, yet they emerge as a (non-local) result of spatial

gradients of that slip. A second (resulting) difference between both types of dislocations is the sign and the

variation of that sign in space. The SSD’s, due to their statistical nature, have a more or less random sign

observed at a length scale associated with the grain structures, as a result of which any bias cancels out and
the SSD’s do not contribute to any in-homogeneities. The sign of the GND densities has a profound

geometrical impact and therefore a larger periodicity, as it is coupled to specific lattice curvatures and

distortions. The actual identification of a certain dislocation as being a statistically stored one or a geo-

metrically necessary one, however, remains rather ambiguous (since at the level of a single dislocation there

is no physical difference), as well as keeping track of the process of dislocations switching between both

types. Nevertheless, when the densities of both types are considered, a clear distinction can be made based

on their characteristics, i.e. the GND density equals the minimum density (or local surplus of a certain sign)

in order to accommodate the local plastic strain gradients, whereas the remaining density is considered to
be statistically stored (Gao and Huang, 2003).

After establishing the occurrence of both dislocation types, the entire framework is furnished to account

for their distinct effect on the constitutive behaviour, incorporating any number or type (edge or screw) of

dislocations. In general local continuum crystal plasticity models, the presence, motions, and interactions of
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dislocations are not explicitly distinguished, as only their effects are modelled indirectly by a phenome-

nological slip law and hardening evolution. The present framework (partly adopted from Evers et al., 2002)

still incorporates a phenomenological slip law, however it is enhanced and the slip resistance is entirely

based on short-range interactions between all (SSD as well as GND) dislocations intersecting the current
slip system (Franciosi and Zaoui, 1982). Now, the accumulation of dislocations ––related to the history of

crystallographic slip–– is the driving force behind the isotropic hardening term. Furthermore, a second

extension is introduced to account for the distinct influence of the GND densities on the plastic slip in a

long-range sense, i.e. through a back-stress measure, counteracting the local resolved shear stress and re-

lated to the heterogeneity of the GND field after removal of external loads. This provides for a physically

motivated and consistent incorporation of global as well as local (intragranular) strain gradient effects and

hence also of scale dependent effects such as grain size dependent responses.

Next to grain size effects and related size effects under micro-torsion (Fleck et al., 1994), the prediction of
particle size effects (Ashby, 1970) and indenter size effects (Nix and Gao, 1998; Gao et al., 1999) is still the

objective of ongoing study (e.g. Aifantis, 1987; Fleck and Hutchinson, 1997; Shu and Fleck, 1999), using

so-called ‘‘strain gradient models’’. Such approaches introduce an intrinsic material length scale in an

analytical plasticity formulation, relying on the underlying generation and distribution of dislocations.

Furthermore, continuum theories of dislocations have been formulated to further enhance those strain

gradient models (Dai and Parks, 1997; Steinmann, 1996; Sluys and Estrin, 2000; Acharya, 2001; Bassani,

2001; Gurtin, 2002; Cermelli and Gurtin, 2002) by making use of (global) plastic or elastic incompatibilities,

based on the work of Nye (1953). In the present work, as a further enhancement, the densities and their
influence are solely and explicitly determined on the FCC slip systems, at a scale that includes global as well

as local strain gradients. A comparison of simulations using the actual model to the discrete dislocation

predictions of a constrained strip under simple shear for the case of double slip (Shu et al., 2001) can be

found in Evers et al. (in press). Furthermore, Gurtin (2002) and Cermelli and Gurtin (2002) have developed

a framework that is based on similar hypotheses as the one presented here, yet based on energetic con-

siderations.

It is emphasized that in the present concept, the grain size does not explicitly enter the constitutive

model and the model parameters can be kept constant throughout the entire grain. The grain size effect
arises naturally as a result of intragranular heterogeneities affected by incompatibilities and obstructions

at the grain boundaries. When the grain size is taken smaller, the inhomogeneities increase. Never-

theless, the primary length parameter entering the presented model is the length of the Burgers vector,

which relates the plastic strain gradients to the GND densities at slip system level. Moreover, limiting

the GND effect to an increased hardening rate or slip resistance near the grain boundaries (Worthington

and Smith, 1964; Gray III et al., 1999) is not satisfactory, as clearly remarked by Mughrabi (2001),

stating that a simple superposition of the GND density on the SSD density does not suffice. Micro-

bending tests (Fleck et al., 1994; St€olken and Evans, 1998) suggest that the GND density can be
substantially smaller than the SSD density, even though their contribution may be quite significant or

even dominant.

In the next section, the entire crystal plasticity framework is presented, which covers the general con-

stitutive formulation including an extended slip law, the determination of the entries in that slip law, i.e. the

slip resistance and the back-stress, and finally the evolution equations for the SSD, GND, and ‘‘grain

boundary dislocation’’ (GBD) densities. Next, in Section 3, the large deformation implementation of the

entire model is discussed under the assumption of plane stress. Regarding the finite element formulation,

the complete algorithmic framework is addressed, i.e. ranging from the integration point solutions up till
the incremental-iterative solution of the global set of non-linear equations. Finally, in Section 4, the re-

sponse of a polycrystal FCC metal (consisting of 12 grains) under plane stress deformation is simulated, of

which the grain size effect on the response and the intragranular variations of several quantities is dem-

onstrated.
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2. Crystal plasticity model

2.1. Constitutive framework

Point of departure is the classical multiplicative decomposition of the deformation gradient tensor into

an elastic and a plastic part according to (Lee, 1969)
F ¼ Fe � Fp; ð1Þ
where the elastic deformation includes small lattice deformations and possibly large rigid body rotations.

Next, the second Piola–Kirchhoff stress measure s � detðFeÞF�1
e � r � F�T

e , with respect to the stress-free
intermediate configuration (Mandel, 1974), is taken to be elastically related to its work conjugated elastic

Green strain measure Ee through
s ¼ 4C : Ee; Ee �
1

2
ðC e � IÞ; C e � FT

e � Fe; ð2Þ
where r is the Cauchy stress tensor, C e is the elastic right Cauchy–Green deformation tensor and I is the

second-order unit tensor. The fourth-order isotropic elasticity tensor 4C is defined by Young’s modulus E
and Poisson’s ratio m.

Furthermore, the evolution of the plastic deformation is prescribed by the plastic velocity gradient tensor

Lp, which by definition can be written as the sum of all crystallographic slip rates _ca on the 12 {1 1 1}Æ1 1 0æ
slip systems a of the FCC metal according to (Rice, 1971)
_Fp ¼ Lp � Fp; Lp ¼
X
a

_caPa
0; Pa

0 � ma
0n

a
0; a ¼ 1; 2; . . . ; 12: ð3Þ
Here, Pa
0 is the non-symmetric Schmid tensor, represented in the reference configuration as the dyadic

product of the two orthonormal vectors ma
0 and na0, the slip direction and slip plane normal, respectively.

The above elastic and plastic parts are coupled through a viscoplastic flow rule (Hutchinson, 1976; Peirce

et al., 1982), which is defined for each slip system a and specifies the rate of plastic shearing _ca as a function

of the associated ‘‘effective’’ shear stress saeff and the current slip resistance sa (see also Nemat-Nasser et al.,

1998; Harder, 1999; Kocks, 2001; Evers et al., in press)
_ca ¼ _c0
jsaeff j
sa

� �1
m

exp

�
� G0

kT
1

�
� jsaeff j

sa

��
signðsaeffÞ; ð4Þ
where _c0 and m are material parameters representing the reference plastic strain rate and the rate sensitivity

exponent, k is Boltzmann’s constant, T is the absolute temperature, and G0 is the total free energy needed

for a moving dislocation to overcome a short-range barrier without the aid of external work. Furthermore,

the effective stress saeff is defined as the difference between the resolved shear stress sa (also known as
‘‘Schmid stress’’) and the resolved back-stress sab
saeff ¼ sa � sab; sa � s : Pa
0; sab � sb : P

a
0; ð5Þ
where both resolved stress measures are projections (Asaro and Rice, 1977; Bronkhorst et al., 1992) of their

corresponding stress tensors s and sb (Harder, 1999) on slip system a, respectively.

2.2. Dislocation interactions

The concepts above leave the slip system strengths and the back-stress tensor still to be determined. The
back-stress tensor describes the effect of long-range stresses caused by the heterogeneity of the GND field,

whereas the slip resistances are a measure for the impeding of dislocation movement by the formation of
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short-range interactions between both SSD’s and GND’s residing on coplanar or intersecting slip systems.

The type and number of short-range interactions can be quantified through a set of interaction coefficients,

stored in the interaction matrix Aan (Franciosi and Zaoui, 1982), after which the slip system strength sa is
taken proportional to the square root of the effective obstacle density following Ashby (1970)
Table

List of

notatio

Disl

dens

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18
sa ¼ clb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
n

Aanjqn
SSDj þ

X
n

Aanjqn
GNDj

s
: ð6Þ
In here, c is a constant ranging from 0.05 to 2.6 for different materials (Lavrentev, 1980), l is the shear

modulus and b is the length of the Burgers vector. Furthermore, when considering FCC metals, qn
SSD and

qn
GND stand for the 12 edge SSD densities (n ¼ 1; 2; . . . ; 12) and the 12 edge and 6 screw GND densities

(n ¼ 1; 2; . . . ; 18), respectively (Kubin et al., 1992). A complete listing of the different dislocation densities,

including their type, orientation, and corresponding slip system, is specified in Table 1.

The global back-stress tensor is defined in the reference configuration and is composed of the resulting

long-range shear stress contributions (sae and sas of the particular edge and screw GND density field,

respectively) on the respective slip systems a according to (Harder, 1999)
sb ¼
X
a

�ðsae þ sas ÞðPa
0 þ PaT

0 Þ; ð7Þ
where the account for their spatial orientation through Pa
0 (cf. Eq. (3)) leads to a secondary resolved back-

stress contribution on the other slip systems after employing Eq. (5). Note that the minus sign in this
1

indices and vectors for dislocation densities and slip systems used in the simulation of FCC metals; the Schmid and Boas

n is discussed in Franciosi and Zaoui (1982). b is the length of the Burgers vector b

ocation

ity n
Type Slip system a m or b

b n Schmid and Boas

Edge 1 1ffiffi
2

p [�1 1 0] 1ffiffi
3

p [1 1 1] B5

Edge 2 1ffiffi
2

p [1 0 �1] 1ffiffi
3

p [1 1 1] )B4

Edge 3 1ffiffi
2

p [0 �1 1] 1ffiffi
3

p [1 1 1] B2

Edge 4 1ffiffi
2

p [�1 �1 0] 1ffiffi
3

p [1 �1 �1] A6

Edge 5 1ffiffi
2

p [1 0 1] 1ffiffi
3

p [1 �1 �1] )A3

Edge 6 1ffiffi
2

p [0 1 �1] 1ffiffi
3

p [1 �1 �1] A2

Edge 7 1ffiffi
2

p [1 1 0] 1ffiffi
3

p [�1 1 �1] )D6

Edge 8 1ffiffi
2

p [�1 0 1] 1ffiffi
3

p [�1 1 �1] )D4

Edge 9 1ffiffi
2

p [0 �1 �1] 1ffiffi
3

p [�1 1 �1] D1

Edge 10 1ffiffi
2

p [1 �1 0] 1ffiffi
3

p [�1 �1 1] )C5

Edge 11 1ffiffi
2

p [�1 0 �1] 1ffiffi
3

p [�1 �1 1] )C3

Edge 12 1ffiffi
2

p [0 1 1] 1ffiffi
3

p [�1 �1 1] C1

Screw – 1ffiffi
2

p [1 1 0] 1ffiffi
3

p [1 �1 �1] or 1ffiffi
3

p [�1 1 �1] )A6 or )D6

Screw – 1ffiffi
2

p [1 0 1] 1ffiffi
3

p [1 �1 �1] or 1ffiffi
3

p [�1 �1 1] )A3 or C3

Screw – 1ffiffi
2

p [0 1 1] 1ffiffi
3

p [�1 1 �1] or 1ffiffi
3

p [�1 �1 1] )D1 or C1

Screw – 1ffiffi
2

p [�1 1 0] 1ffiffi
3

p [1 1 1] or 1ffiffi
3

p [�1 �1 1] B5 or D4

Screw – 1ffiffi
2

p [1 0 �1] 1ffiffi
3

p [1 1 1] or 1ffiffi
3

p [�1 1 �1] )B4 or D4

Screw – 1ffiffi
2

p [0 �1 1] 1ffiffi
3

p [1 1 1] or 1ffiffi
3

p [1 �1 �1] B2 or )A2
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equation accounts for the transformation of the resulting long-range shear stress contributions to back-

stress contributions in Eq. (5).

The determination of the resolved long-range shear stress contributions sae and sas in the undeformed

configuration originally stems from the equations for the stress concentration near individual edge and
screw dislocations by Cottrell (1961). However, when applying those equations to determine the resulting

long-range stress state in a certain origin as caused by a uniform field of GND’s, it completely cancels out.

This is caused by the fact that each individual dislocation has a counterpart with an exact opposite con-

tribution to the resulting long-range stress. Therefore, not the GND density field itself, but its spatial

variations cause resulting long-range stresses.

In order to quantify that effect, the resulting long-range stress at slip system a for the edge and screw

GND densities is computed by an analytical integration procedure of the equations for individual dislo-

cations (Cottrell, 1961) over a circular domain with radius R around the origin, while the GND densities are
assumed to vary linearly in space.
sae ¼ � lbR2

8ð1� mÞ
X
n

dan
e ð$0q

n
GND �ma

0Þ; ð8Þ

sas ¼
lbR2

4

X
n

dan
s ð$0q

n
GND � pa0Þ; pa0 ¼ ma

0 � na0: ð9Þ
Here, the multipliers dan
e and dan

s equal )1, 0, or 1, according to the way the dislocation type n spatially

relates to the slip system a (cf. Table 1)
dan
e ¼ 1 for a ¼ n ¼ 1; 2; . . . ; 12

0 for all other cases

�
ð10Þ

dan
s ¼

�1 for dð4;13Þ
s ; dð6;18Þ

s ; dð8;17Þ
s ; dð9;15Þ

s dð10;16Þ
s ; dð11;14Þ

s

1 for dð1;16Þ
s ; dð2;17Þ

s ; dð3;18Þ
s ; dð5;14Þ

s dð7;13Þ
s ; dð12;15Þ

s

0 for all other cases:

8><>: ð11Þ
2.3. Dislocation densities

In the remainder of this section, the determination of the SSD, GND and GBD densities is discussed.

First, the evolution of the 12 edge SSD densities of the FCC metal, as required in Eq. (6), is based on the

balance between the accumulation and annihilation rates, expressed by
_qn
SSD ¼ 1

b
1

dan
e La

�
� 2ycq

n
SSD

�
dan
e j _caj; qn

SSDðt ¼ 0Þ ¼ qSSD0
; ð12Þ
which is a generalisation of the relation originally proposed by Essmann and Mughrabi (1979). The

accumulation rate (first term in the right-hand side of Eq. (12)) is linked to the average dislocation segment

length of mobile dislocations (SSD’s) on system a, La, which is strongly related to the current dislocation
state through (Tabourot et al., 1997; Arsenlis and Parks, 2002)
La ¼ KffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
n H

anjqn
SSDj þ

P
n H

anjqn
GNDj

q : ð13Þ
Here, K is a constant and the coefficients H an indicate the mutual immobilisation between dislocations of

different slip systems, following the same convention as Aan in Eq. (6), yet having different values. Fur-
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thermore, the annihilation rate (second contribution in the right-hand side of Eq. (12)) is assumed to be

controlled by the critical annihilation length yc, a material parameter characterising the average distance

between two dislocations of opposite sign which triggers spontaneous neutralization.

Next, the GND density is determined from the gradients of the crystallographic slip in the undeformed
situation from geometrical compatibility (Nye, 1953; Kr€oner, 1962; Ashby, 1970; Arsenlis and Parks, 2002)
Fig. 1.

of the
qn
GND ¼ qn

GND0
� 1

b

X
a

dan
e ð$0c

a �ma
0Þ þ

1

b

X
a

dan
s ð$0c

a � pa0Þ: ð14Þ
For FCC metals, in contrast to the 12 positive SSD densities, the 12 edge and 6 screw GND densities have a

certain polarity which is crucial to ascertain the direction of the slip system resolved back-stress. As can be

clearly seen from Eq. (14), the sign of the GND densities is directly related to the sign of the corresponding

crystallographic slip gradients. Each of the 6 screw dislocation densities is determined by addition of the
appropriate slip gradients on both the glide planes in which they can reside, as they are assumed to be free to

cross-slip while their corresponding slip plane remains an ambiguous choice. This is consistent with the fact

that in Eq. (11), each (screw) dislocation density (n) has two contributing slip systems (a), whose orien-

tations can be found in Table 1. Furthermore, the initial GND density qn
GND0

can be identified with the

initial grain boundary dislocation density field, present before the onset of plastic deformation. The GBD

densities are introduced to account for lattice incompatibilities across grain boundaries. Because of their

geometrical nature, the GBD densities have similar constitutive influences as the GND densities. Therefore,

as a part of qn
GND0

, the 12 edge GND densities are taken equal to the initial grain boundary dislocation
(GBD) densities
qn
GND0

� dan
e qa

GBD: ð15Þ
This contribution is emphasized to be of qualitative nature, as the exact determination of the GBD den-
sities, including the screw dislocations, is evidently more complicated than captured by the trends using the

present simplified formulation, visualised in Fig. 1.

To determine the GBD density, first, the slip system orientations of two adjacent grains a and b are

evaluated. In order to account for the symmetries of the FCC lattice, the slip systems of grain a are related

to the particular slip system configuration of grain b, as indicated in Table 2, that provides the best overall

correspondence between all slip systems on either side, i.e. resulting in the smallest amount of GBD

densities. Next, the GBD density is related to the misfit length ha between the slip system under consid-

eration of grain a and its associate slip system of grain b, where ha follows by comparing the lengths of their
grain boundary resolved Burgers vectors, ba and bb, respectively, according to
jqa
GBDj �

1

ha2
¼ 1

ba

�
� 1

bb

�2

: ð16Þ
A grain boundary lattice mismatch gives rise to additional (GBD) dislocations; the GBD density is determined from the lengths

grain boundary resolved Burgers vector (ba and bb) and the direction of the grain boundary unit normal nGB
0 .



Table 2

The slip systems of grain a in the first row correspond to one of the slip system configurations of grain b in the consecutive rows,

in accordance with the best geometrical match, depending on mutual orientation differences

Grain a 1 2 3 4 5 6 7 8 9 10 11 12

Related slip

systems

of grain b

1 2 3 4 5 6 7 8 9 10 11 12

2 3 1 11 12 10 5 6 4 8 9 7

3 1 2 9 7 8 12 10 11 6 4 5

4 5 6 1 2 3 10 11 12 7 8 9

5 6 4 8 9 7 2 3 1 11 12 10

6 4 5 12 10 11 9 7 8 3 1 2

7 8 9 10 11 12 1 2 3 4 5 6

8 9 7 5 6 4 11 12 10 2 3 1

9 7 8 3 1 2 6 4 5 12 10 11

10 11 12 7 8 9 4 5 6 1 2 3

11 12 10 2 3 1 8 9 7 5 6 4

12 10 11 6 4 5 3 1 2 9 7 8
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When considering the grain boundary unit normal nGB
0 to be pointed from the grain having the largest grain

boundary resolved Burgers vector to the grain having the smallest one, the sign and magnitude of the GBD

density can be expressed by
qa
GBD ¼ signðna0 � nGB

0 Þ ðjn
a
0 � nGB

0 j � jnb0 � nGB
0 jÞ2

b2
: ð17Þ
Note that when the two neighbouring grains have the same crystallographic orientation, the GBD density

turns out to be zero. Besides, the amount of grain boundary misorientation together with both lattice

orientations determine the compatible GBD density profile. Furthermore, both the length and the direction

of the Burgers vector do not need to be updated, as all formulations are evaluated in the reference con-

figuration.
3. Numerical implementation

3.1. Variational formulation

In order to implement the previously discussed crystal plasticity framework in a finite element frame-
work, first, the governing equations must be identified. From Eq. (14), one can conclude that for the

determination of the GND density field, the crystallographic slip fields for all slip systems are required. On

the other hand, in order to determine the evolution of the crystallographic slip fields through Eq. (4), one

needs the current back-stress, which again depends on the GND density field by means of Eqs. (8) and (9).

Once those densities are known, all relevant quantities can be determined. The GND densities are therefore

chosen to be additional nodal degrees of freedom, accompanied by just as many additional evolution

equations. Accordingly, the entire set of governing equations is given by the conventional stress equilibrium

condition, evaluated in the undeformed configuration, and Eq. (14), here written in an abbreviated format
$0 � TT ¼ 0; T � detðFÞr � F�T; ð18Þ

qn
GND ¼ qn

GND0
þ dna

0 � $0c
a 8n; ð19Þ
where T is the first Piola–Kirchhoff stress tensor and where the multipliers dan
e and dan

s , the vectors ma
0 and

pa0, the factor 1
b, and the corresponding signs are all properly stored in the vectors dna

0 , using Einstein’s
summation convention.
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The continuity requirements on the displacements as well as the GND densities have to be relaxed over

the element boundaries in order to be able to use standard C0-continuous finite elements. This is accom-

plished by first multiplying the stress equilibrium and GND density evolution conditions by weighting

functions wu and wn
p, respectively. After integrating both expressions over the volume V0 of the body in its

reference (undeformed) configuration, the divergence theorem is applied and a Newton–Raphson iterative

procedure is introduced, which provides the iterative corrections (dT, dqn
GND, and dca) to be expressed by

linearised functions of the solution estimates (T�, q
n
GND, and ca�) obtained in the previous iteration
Z

V0

ð$0wuÞT : dTT dV0 ¼
Z
S0

wu � t� dS0 �
Z
V0

ð$0wuÞT : TT
� dV0; ð20Þ

Z
V0

½wn
pdq

n
GND þ ð$0wn

qÞ � d
na
0 dc

a�dV0

¼
Z
S0

wn
qC

n
n�
dS0 �

Z
V0

½wn
qðq

n
GND�

� qn
GND0

Þ þ ð$0wn
qÞ � d

na
0 c

a
��dV0 8n; ð21Þ
where at the surface S0, t� is the (first Piola–Kirchhoff) surface traction and Cn
n�

is a measure for the crys-

tallographic slip in the outward normal direction. In this weak formulation, the equations for the iterative

corrections (T� and ca�) and the iterative updates (dT and dca) are to be expressed and solved as a function of
the so-called ‘‘independent variables’’, i.e. the variables which will be selected as the finite element nodal

degrees of freedom and their spatial variations. This process is discussed in the next subsection.

3.2. Iterative updates and tangents

The elaborations (at the integration point level) in this subsection are presented under the assumption of
plane stress loading conditions. Therefore, the total deformation gradient tensor is written as the additive

decomposition
F ¼ F þ bF ; ð22Þ
where F only contains the four in-plane components of F and where bF contains the three non-zero

components energetically associated to the stress components which are enforced to equal zero
T � e30 ¼ 0: ð23Þ
Here, the initial unit base vector e30 is oriented in the out-of-plane direction. Next to the three degrees of
freedom in bF , and next to F, the remaining two components of the deformation gradient tensor equal zero.

Now, three sets of variables are distinguished. First, the components of bF constitute, along with all slip

rates _ca, the entire set of dependent variables. This set is a priori unknown, yet it can be solved as a function

of the independent variables F, qn
GND, and rn0 � $0q

n
GND, which are straightforwardly determined from the

intentional nodal degrees of freedom. Together, both sets represent the entire set of state variables, a set

which enables the consistent determination of all remaining relevant quantities.

In order to determine the dependent variables at the integration point level, accordingly, the following

conditions must be satisfied
f ðF; qn
GND; r

n
0; F̂; _c

aÞ ¼ 0; ð24Þ

gaðF; qn
GND; r

n
0;
bF ; _caÞ ¼ 0 8a; ð25Þ
where Eq. (24) is actually a formal representation of Eq. (23), taking into account that the stress T is a

priori unknown and is therefore considered to be related to all state variables. Furthermore, Eq. (25) is a
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representation of the slip laws in Eq. (4), where Eq. (5) is substituted for the effective stress, again depending

on the second Piola–Kirchhoff stress through Eqs. (2), (1), (3) and depending on the back-stress tensor via

Eqs. (7)–(9), and where Eq. (6) is substituted for the slip system strength, again depending on Eqs. (12) and

(13).
The system of strongly non-linear equations above ––Eqs. (24) and (25)–– requires an iterative solution

procedure at the material point level. Resultingly, the dependent variables are unambiguously determined

from the independent variables, which can formally be written as
bF ¼ bF ðF; qn
GND; r

n
0Þ; ð26Þ

_ca ¼ _caðF; qn
GND; r

n
0Þ: ð27Þ
The macroscopic iterative updates T� and ca�, as required in Eqs. (20) and (21), are solved accordingly by the

same iteration process at the material point level. Similar to bF and _ca, T� and ca� also primarily dependent on

the independent variables.

Now, after consistent linearisation of the crystal plasticity framework and the accompanying plane stress

condition, the iterative corrections dT and dca at the macroscopic level (cf. Eqs. (20) and (21)) can be

written as a function of the iterative variations of all independent variables
dT ¼ oT

oF

����
qn
GND

;rn
0

: dF þ oT

oqn
GND

�����
F;rn

0

dqn
GND þ oT

orn0

�����
F;qn

GND

� drn0; ð28Þ

dca ¼ oca

oF

����
qn
GND

;rn
0

: dF þ oca

oqn
GND

�����
F;rn

0

dqn
GND þ oca

orn0

�����
F;qn

GND

� drn0; ð29Þ
where the subscripts next to the vertical bars indicate that the specified variables are kept constant. Here, it

is acknowledged that the constitutive formulations of the quantities T and ca primarily depend on the

chosen independent variables F, qn
GND and rn0, yet secondarily also on the (a priori unknown) dependent

variables F and _ca. However, this secondary dependence does not involve explicit formulations that can be

extracted (as already pointed out, Eqs. (26) and (27) imply the iterative solution of Eqs. (24) and (25)).

Therefore, in order to explicitly determine the partial derivatives in Eqs. (28) and (29), those secondary

dependencies have to be taken into account.

First, with the purpose of abbreviating the formulations exploiting the secondary dependencies, consider

the following definitions
P
�
¼ T

ca

� �
; N

�
¼

F
qn
GND

rn0

24 35; W
�
¼

bF
_ca

� �
; U

�
¼ f

ga

� �
; ð30Þ
where all components of the tensor and vector quantities, and the complete set of the slip system and

dislocation density related quantities, are properly stored in the columns, incorporating the primary un-

knowns (P
�
), the independent variables (N

�
), the dependent variables (W

�
), and the constitutive conditions

(U
�
). Eqs. (28) and (29) can now be summarised by
dP
�
¼

dP
�

dN
�

dN
�
; ð31Þ
where the matrix
dP
�

dN
�
contains all relevant partial derivatives. Next, the components of this matrix are

elaborated by making a clear distinction between the independent variables and the dependent variables
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dP
�

dN
�

¼
dP

�

dN
�

������
W
�

þ
dP

�

dW
�

������
N
�

dW
�

dN
�

; ð32Þ

� �

and an exercise which allows for the explicit determination of the entries in

oP
�

oN
�

���
W
�

and
oP
�

oW
�

���
N
�

:

The total derivative
dW
�

dN
�
of the dependent variables with respect to the independent variables in Eq. (32)

cannot be determined explicitly. Instead, this derivative follows from the consideration that the require-

ments in Eqs. (24) and (25) must be satisfied
dU
�
¼

dU
�

dN
�

dN
�
¼ 0

�
; ð33Þ
that is, for all variations of the independent variables
dU
�

dN
�

¼
oU
�

oN
�

������
W
�

þ
oU
�

oW
�

������
N
�

dW
�

dN
�

¼ 0; ð34Þ

� �

where the partial derivatives in

oU
�

oN
�

���
W
�

and
oU
�

oW
�

���
N
�

can again be derived explicitly, which were actually already

required for the material point Newton Raphson iteration procedure for the solution of Eqs. (24) and (25).

The remaining derivatives can now be extracted according to
dW
�

dN
�

¼ �
oU
�

oW
�

������
N
�

0BB@
1CCA

�1

oU
�

oN
�

������
W
�

: ð35Þ
Finally, the solution estimates and iterative corrections of the primary unknowns, i.e. T�, ca�, dT, and dca in
Eqs. (20) and (21), are determined as a function of the nodal degrees of freedom and their spatial variations

through Eq. (31).

The presented equations are formulated schematically, yet their elaboration only requires the straight-

forward determination of the partial derivatives in
oP
�

oN
�
jW
�
,
oP
�

oW
�
jN
�
,
oU
�

oN
�
jW
�
, and

oU
�

oW
�
jN
�
, which would be too com-

prehensive to include in this work. It is remarked that the time integration schemes required to compute ca

from Eq. (4) and qa
SSD from Eq. (12) can be chosen arbitrarily between fully explicit and fully implicit.

3.3. Finite element formulation

In order to systematically compute an approximate solution of Eqs. (20) and (21), for arbitrary

geometries and boundary conditions, the volume V0 of the configuration is subdivided in finite elements,

whose contributions are subsequently added in a standard manner. Within each element e (having volume

V e
0 and boundary surface Se

0), the unknown fields of the nodal variables and weighting functions, as well as

their spatial variations, are approximated by their (global) nodal values (stored in u
�
and q

�GND

), multiplied

by their corresponding interpolation functions (stored in Ne
u and Ne

q) or the spatial derivatives thereof

(stored in Be
u and Be

q). Furthermore, the components and indices of dna
0 are stored per element in De, and

following the procedures from Section 3.2, the iterative estimations of the first Piola–Kirchhoff stress tensor
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and the crystallographic slips (stored in T
�
e

�
and c

�
e

GND�

) can be computed in each material point, based on the

nodal degrees of freedom, as well as their iterative corrections (stored in dT�
e and dc

�
e)
dT�
e ¼ Ce

1B
e
udu� þ ðCe

2N
e
q þ Ce

3B
e
qÞdq�

GND

; ð36Þ

dc
�
e ¼ Ce

4B
e
udu�

þ ðCe
5N

e
q þ Ce

6B
e
qÞdq�

GND

; ð37Þ
where du� and dq
�
GND

are the iterative corrections for the nodal displacement and GND density values, and

where the matrices Ce
1, C

e
2, C

e
3, C

e
4, C

e
5, and Ce

6, represent the derivatives as specified in Eqs. (28) and (29) or

equivalently Eq. (31), evaluated separately for each element.
After following the standard Galerkin approach and taking into account that both Eqs. (20) and (21)

must be satisfied for any admissible weighting function, the following system of equations is established,

comprising the discrete force balance and discretised GND density evolution conditions.
Kuu Kuq

Kqu Kqq

� � du
�

dq
�GND

" #
¼

r
�ur
�q

" #
; ð38Þ
where
Kuu ¼
X
e

Z
V e
0

BeT

u Ce
1B

e
u dV

e
0 ; ð39Þ

Kuq ¼
X
e

Z
V e
0

BeT

u ðCe
2N

e
q þ Ce

3B
e
qÞdV e

0 ; ð40Þ

Kqu ¼
X
e

Z
V e
0

BeT

q DeCe
4B

e
u dV

e
0 ; ð41Þ

Kqq ¼
X
e

Z
V e
0

½NeT

q Ne
q þ BeT

q DeðCe
5N

e
q þ Ce

6B
e
qÞ�dV e

0 ; ð42Þ

r�u
¼

X
e

Z
Se
0

NeT

u t�
e

�
dSe

0 �
X
e

Z
V e
0

BeT

u T�
e

�
dV e

0 ; ð43Þ

r�q
¼

X
e

Z
Se
0

NeT

q C�
e

n�
dSe

0 � � �

�
X
e

Z
V e
0

½NeT

q Ne
qðq�

e

GND�

� q
�GND0

Þ þ BeT

q Dec
�
e

�
�dV e

0 ; ð44Þ
where the boundary terms t
�
e

�
and C

�
e

n�
only have to be specified on element boundaries (Se

0) coinciding with

the outer boundary of the body (S0). This system is solved by iteratively updating the nodal estimations u��
and q

�GND�

with corrections du
�
and dq

�GND

, a process which is repeated until an appropriate convergence

criterion is satisfied, i.e. until the right-hand side becomes sufficiently small.

Additionally, the grain boundaries can be regarded to be a part of that outer boundary. To accomplish
this, the local finite elements must be uncoupled by means of placing double nodes at the grain boundaries,



L.P. Evers et al. / International Journal of Solids and Structures 41 (2004) 5209–5230 5221
of which the displacements are again tied by specifying dependencies in order to maintain the polycrystal

sample consistent. That leaves the GND densities or the herewith associated forces to be specified, cor-

responding to Dirichlet (essential) or Neumann (natural) boundary conditions, respectively.

As the initial GND densities ––here representing the GBD densities–– can be determined from the
crystallographic lattice mismatch (cf. Section 2.3), these can subsequently be prescribed at the nodes on

both sides of the grain boundaries (i.e. Dirichlet boundary conditions). In order not to disturb the GND

density evolution during deformation, the associated initial GND density field is determined by a separate

finite element computation on beforehand. During that separate computation, the displacements at the

outer boundaries are fixed to zero and at the grain boundary nodes, the GND densities are prescribed to

evolve gradually (i.e. linearly, in 15 steps) until the desired value is attained. The resulting GND density

field (integration point values) is adopted to serve as the initial GND density field in the actual deformation

process simulations.
The total amount of individual GBD’s necessary to account for lattice incompatibility across the grain

boundaries is determined by the initial configuration, and is therefore solely dependent on the initial lattice

mismatch. However, during the initial separate finite element computation, the GBD densities ––as being

nodal variables–– are inherently spread over a certain area near the grain boundaries. Given the fact that

the amount of individual GND’s should not change, and the numerical observation that the relative GBD

density variation between the grain boundary and core is size independent, the dislocation density to be

prescribed at the grain boundary nodes (qn
node0

) should follow a relation like (cf. Eqs. (15) and (17))
qn
node0

¼ j
d

ffiffiffiffiffiffiffiffiffiffiffiffiffi
qn
GND0

q
; ð45Þ
where j is a dimensionless material constant and d is the grain diameter.

Next, during the finite element simulations of the deformation process, the plastic shear in the grain
boundary normal directions is enforced to equal zero (i.e. Neumann boundary conditions), which actually

corresponds to the obstruction of crystallographic slip across the grain boundaries. Finally, free boundaries

are modelled by enforcing the GND density to vanish locally. Both boundary conditions are quite realistic

and constitute a physically based description of crystallographic boundaries.
4. Simulations

The computational implementation of the model under plane stress conditions as discussed in Section 3

has been applied to simulate the size dependent constitutive behaviour of the polycrystal sample which is

depicted in Fig. 2. The sample, consisting of 12 grains, is subdivided into 265 linear finite elements, with 379

nodes (4 nodes per element) and 20 degrees of freedom per node (2 displacements and 18 GND densities)

resulting in a total number of 7580 degrees of freedom. In addition, the incorporation of double nodes at

the grain boundaries requires the account for 176 displacement dependencies in order to kinematically

couple the individual grains. Moreover, the entire system of equations is solved using full numerical

integration, i.e. 4 integration points per element.
For all simulations, the random crystallographic orientations of the 12 grains are kept equal for all

simulated sample sizes and are visualised in Fig. 3. Furthermore, the grain boundary normal directions are

chosen parallel to the sample plane. The displacement boundary conditions are presented in Fig. 2, where u1
is prescribed such that the associated macroscopic strain rate remains fixed at 0.001 s�1 (up to a total strain

of 0.01 in 175 increments, in the interest of curtailing computation time). The remaining boundary con-

ditions, related to the additional degrees of freedom, i.e. the nodal GND densities or alternatively, the

corresponding plastic shear components in the direction perpendicular to the grain boundaries or free

surfaces, are attributed as already explained at the end of Section 3. Furthermore, an initial GND density
field is supposed to represent the GBD densities, related to the specific grain boundary lattice mismatches, a



Fig. 2. Geometry and classical displacement boundary conditions with respect to the simulations of the FCC polycrystal sample with

length L and height H in tension; the remaining boundary conditions and dependencies are explained in the text.

Fig. 3. Equal area projection pole figures with the 12 basic crystallographic lattice directions.
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procedure which has also been discussed in Section 3. The sample lengths L are taken to equal 10�3, 10�
8
3,

10�
7
3 and 10�2 m (equivalent to 1.0, 2.2, 4.6 and 10 mm, respectively). Once the sample size decreases, the

intragranular (plastic) inhomogeneities are expected to increase, along with the GND densities, which then

play a significant role in strengthening the specimen through short- and long-range interactions. Finally, the

temperature (in Eq. (4)) is taken 300 K and the material constants of FCC copper (12 slip systems and SSD
types, 18 GND types) are specified in Table 3.

In the following, the results for the specimen lengths 1 and 10 mm are compared in order to achieve a

clear insight into the various size effects. First, a scalar measure for the dislocation densities is evaluated,

which is taken to equal the Euclidean norm of all SSD or GND density contributions. Note that the

dislocation sign of the GND densities is not considered in this respect, as such would be too comprehensive

for 18 different types. The distribution of the density measure for the SSD’s is presented in Fig. 4, from

which it can be concluded that the difference in order of magnitude between both length scales remains

rather small.
When regarding the distribution of that same measure, however now evaluated for the GND densities in

Fig. 5, a clear distinction between both scales can be observed. In the case of the small sample, the order of

magnitude of the GND densities is roughly 5 times less than the SSD counterpart, whereas the GND

densities of the large sample are almost negligible. The first explanation for this is the fact that, as a result of

Eq. (45), the total amount of GBD dislocations necessary to account for lattice incompatibility across the

grain boundaries is automatically spread over a larger area in Fig. 5(b), resulting in an initial difference



Table 3

Constitutive parameters for FCC copper; partly adopted from Evers et al. (2002) or fitted on the data in that work, and partly taken

from elsewhere (cf. the footed references); the coefficients a0, a1, a2 and a3 are entries in the dislocation interaction matrix Aan, which is

documented by Franciosi and Zaoui (1982) and quantified for copper by Cuiti~no and Ortiz (1992); the coefficients h0, h1, h2 and h3 are
entries in H an, whose values for copper are adopted from Tabourot et al. (1997)

Parameter Symbol Magnitude Unit Used in Eq.

Young’s modulus E 144 GPa (2)

Poisson’s ratio m 0.33 – (2) and (8)

Reference plastic strain rate _c0 0.001 s�1 (4)

Rate sensitivity exponenta m 0.05 – (4)

Boltzmann’s constant k 1.38· 10�23 JK�1 (4)

Reference activation energyb G0 4.54· 10�20 J (4)

Strength parameter c 0.3 – (6)

Shear modulus l 54.2 GPa (6), (8) and (9)

Burgers vector lengthc b 0.256 nm (6), (8), (9), (12), (14)

and (17)

Interaction coefficient a0 0.06 – (6) (in Aan)

Interaction coefficient a1=a0 5.7 – (6) (in Aan)

Interaction coefficient a2=a0 10.2 – (6) (in Aan)

Interaction coefficient a3=a0 16.6 – (6) (in Aan)

Radius GND evaluation area R 3.16· 10�6 m (8) and (9)

Critical annihilation lengthd yc 1.6 nm (12)

Initial SSD densitye qSSD0
1.0 · 1012 m�2 (12)

Material constantf K 10 – (13)

Immobilisation coefficient h0 0.2 – (13) (in H an)

Immobilisation coefficient h1 0.3 – (13) (in H an)

Immobilisation coefficient h2 0.4 – (13) (in H an)

Immobilisation coefficient h3 1.0 – (13) (in H an)

GBD parameter j 0.1 – (45)

a Tabourot et al. (1997).
bAshmawi and Zikry (2000).
c Cuiti~no and Ortiz (1992).
d Essmann and Mughrabi (1979).
e Cuiti~no and Ortiz (1992).
f Sabar et al. (2002).

Fig. 4. Distribution of the SSD density measure for two sample lengths at an equivalent strain of e ¼ 0:01. (a) L ¼ 1:0 mm, (b) L ¼ 10

mm.
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Fig. 5. Distribution of the GND density measure for two sample lengths at an equivalent strain of e ¼ 0:01.

(a) L ¼ 1:0 mm, (b) L ¼ 10 mm.
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between both GND density distributions. The second explanation for the larger GND density magnitude in

Fig. 5(a) is the fact that, during deformation, the plastic inhomogeneity between the grain core and the

boundaries ––where the slip is obstructed–– has to be overcome within a much smaller distance (factor 10)

in the L ¼ 1 mm case. According to Eq. (14), the GND densities automatically increase when the plastic slip

gradients increase, which does not only result in an increased slip resistance through Eq. (6), but also in an
increased back-stress contribution via Eqs. (8), (9) and (7).

In order to examine the development of the dislocation density measures during the course of the

deformation and to recover their actual value, they are evaluated along a cross-section at half the sample

height for various equivalent logarithmic strain values e ¼
ffiffiffiffiffiffiffiffiffiffiffi
2
3
e : e

q
, where e ¼ lnðUÞ and U is the right

stretch tensor. Herewith, 5 grain boundaries are intersected, of which the positions are graphically repre-

sented by the dashed vertical lines. In Fig. 6(a) and (b), it can be clearly observed that the SSD densities

evolve slightly more in the core regions of the grains than in the grain boundary regions. This can be

attributed to the SSD density evolution in Eq. (12), which is higher in regions where the crystallographic

slip is less impeded. As already emphasized above, no significant differences arise between both length

scales.

The GND density profiles along the intersection for both length scales are shown in Fig. 7(a) and (b).

Here indeed a huge difference is observed, where the GND densities of the large sample are approximately 7
times smaller than those of the small sample. In contrast to the SSD profiles, the GND densities increase

near the grain boundary and decrease toward the grain cores and toward the GND-free outer surface,

entirely in agreement with the expectations. Moreover, the relative evolution of the GND densities during

deformation is considerably smaller than the evolution of the SSD densities, which triggers the question

whether such GND profiles would also arise in absence of any initial GND densities. As a verification of

this, the same simulations have been performed, yet without the grain boundary dislocation densities. The

accompanying profiles of the GND density measure are shown in Fig. 8(a) and (b). In the right part of the

sample, the GND density measure quickly increases to similar levels, while the densities on the left remain a
little smaller. However, the tendency of the GND densities to increase toward the grain boundaries remains

intact, which can therefore be attributed to the additional boundary conditions that obstruct plastic slip in

the direction perpendicular to those boundaries.

Finally, the stress–strain responses for the various sample sizes under consideration are evaluated. For

bulk grains, it is expected that the flow stress will follow the Hall–Petch relation (Hall, 1951; Petch, 1953;

Armstrong et al., 1962)



Fig. 6. Profile of the measure for the SSD densities along the x1-direction for increasing deformation e,
evaluated at half the sample height; the vertical dashed lines indicate the x1-positions of the grain boundary intersections.

(a) L ¼ 1:0 mm, (b) L ¼ 10 mm.

Fig. 7. Profile of the measure for the GND densities along the dimensionless x1-direction for increasing deformation e,
evaluated at half the sample height; the vertical dashed lines indicate the x1-positions of the grain boundary intersections.

(a) L ¼ 1:0 mm, (b) L ¼ 10 mm.
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rðeÞ ¼ r0ðeÞ þ kðeÞd�n; ð46Þ
where e is the equivalent logarithmic strain measure defined previously and r is the equivalent von Mises
stress according to
r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
rd : rd

r
; rd ¼ r� 1

3
trðrÞI ð47Þ
while r0 is the flow stress in the absence of any size effects, i.e. corresponding to the imaginary situation of

an infinitely large sample (in this case realized by enforcing all nodal GND densities to equal zero). Both the

equivalent logarithmic strain measure and the von Mises stress measure are volume-averaged over the
entire sample. Furthermore, k and n are the Hall–Petch slope and exponent, respectively.



Fig. 8. Profile of the measure for the GND densities along the dimensionless x1-direction for increasing deformation e, evaluated at half

the sample height; in contrast to Figs. 4–7, here, the GBD densities have been omitted; the vertical dashed lines indicate the x1-positions
of the grain boundary intersections. (a) L ¼ 1:0 mm, (b) L ¼ 10 mm.
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The response results are presented in Fig. 9(a) and (b), for both the cases with and without an initial

GND density field, respectively. An obvious size effect can be distinguished, not only during plastic

deformation, but moreover also at the onset of yielding. This latter effect is clearly the result of the presence
of the GBD densities and is often observed in reality (e.g. Carreker and Hibbard, 1953). In order to

quantify this grain size effect, the Hall–Petch relation in Eq. (46) is considered. However, it is noted that the

particular polycrystal specimen in Fig. 2 deals with a much higher free surface fraction (with respect to the

amount of grain boundaries) than the bulk polycrystals for which the Hall–Petch relation is actually in-

tended. Besides, due to the limited number of grains, the specific crystallographic orientations may influ-

ence the results.

In order to find the Hall–Petch parameters, i.e. the Hall–Petch slope k and the exponent n, the value of
r0ðeÞ is taken according to the stress–strain profile as simulated for the sample of (imaginary) infinitely large
dimensions. Next, the parameters are determined in such a way that the total accumulated difference be-

tween the simulated stress–strain curves and the curves following from the Hall–Petch relation is minimized
Fig. 9. Stress–strain curves for various sample lengths L; Hall–Petch exponent n ¼ 1:50. (a) With GBD densities. (b) Without GBD

densities.



Fig. 10. Stress–strain curves for various sample lengths L, taking into account GBD densities and obstructing plastic deformation near

the outer surfaces; Hall–Petch exponent n ¼ 1:19.
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in a least squares sense, following Evers et al. (2002). For this procedure, it is assumed that n is a constant

and that k may vary as a function of the equivalent logarithmic strain e. The best fit of the Hall–Petch

relation on both the data of Fig. 9(a) and (b) is achieved using a Hall–Petch exponent of n ¼ 1:50. Both
figures reveal the same Hall–Petch exponent because of the fact that the influence of the GBD density field

is merely a superposition, which does not significantly disturb the dislocation density evolutions as such.

The value for n achieved is larger than the values mostly reported in the literature, i.e. 0:36 n6 1:0, but it is
remarked again, this might be caused by the enlarged free surface effect. In order to circumvent this effect,
additional simulations have been performed, which consider the free surfaces to be artificial grain

boundaries, i.e. by obstructing the crystallographic slip contribution in their outward normal direction. The

resulting stress–strain response is presented in Fig. 10 and results in a Hall–Petch exponent of n ¼ 1:19.
5. Conclusions

A non-local crystal plasticity framework has been developed, which incorporates the distinct interactions

of various types of dislocation densities. This has been accomplished by including a phenomenological flow

rule at the slip system level, which depends on an effective resolved shear stress and a slip resistance term.

The first one is composed of the ordinary Schmid stress, yet in this case ‘‘corrected’’ by a newly developed

back-stress measure, which represents the long-range interactions that are characteristic of GND density

fields, because of their specific dislocation sign and relatively large range of influence. Moreover, it brings

about a kinematic hardening contribution and includes dependencies between various slip systems based on

their spatial orientation. The second term ––the slip resistance–– depends on the short-range interactions
between all dislocations present in the material (and therefore capable of obstructing the ongoing plastic

deformation). This term comprises various interactions between SSD’s and GND’s on different slip sys-

tems, i.e. based on their spatial orientation. Whereas the SSD densities are controlled by a ‘‘generation-

annihilation’’ evolution equation adopted from literature, the GND densities follow directly from the

spatial gradients of crystallographic slip. Finally, a simplified formulation has been presented for the

determination of grain boundary dislocation densities, based on the crystallographic lattice mismatch at the

grain boundaries. These densities are used as a qualitative measure for an initial GND density field.

The implementation of the entire framework in a finite element environment incorporates the consid-
eration of two governing equations, i.e. the ordinary stress equilibrium condition and the GND–plastic slip
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coupling. Next to formulating their variational expression, linearising them and discretising the governing

quantities within a finite element context, the solution procedure for solving the strongly non-linear set of

equations at the integration point level has been presented, along with a pragmatic approach for deter-

mining the consistent tangential relations which are necessary to solve the global system of equations
iteratively. The extra nodal degrees of freedom ––the GND densities–– allow for the specification of various

additional boundary conditions which closely approach reality, i.e. dislocation free outer surfaces, strongly

obstructed plastic deformation between grains, and an initial GND density field near the grain boundaries.

The mechanical response of a polycrystal sample under plane stress conditions has been simulated for

various sample sizes, where the grain configuration and crystallographic orientations remain unaltered. The

SSD density field appears to be nearly size independent, where the largest SSD densities are found in the

crystal core, related to the unhindered crystallographic slip in that region. Furthermore, the GND field is

strongly size dependent, as the plastic inhomogeneities between the grain boundaries and the cores have to
be accommodated by the GND field within a varying distance for the different sample sizes. This

strengthening effect manifests itself in a size dependent flow stress, in addition to which the initial GND

density field causes the (initial) yield stress to be size dependent.
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